Compact semitopological semigroups and affine semigroups
نویسندگان
چکیده
منابع مشابه
Finite semigroups as categories, ordered semigroups or compact semigroups
The results presented in this section are a good illustration of the following quotation of Marshall Stone [34]: ’A cardinal principle of modern mathematical research may be stated as a maxim: “One must always topologize” ’. Varieties of finite semigroups are a good example where Stone’s principle was applied successfully. Recall that a variety of semigroups is a class of semigroups closed unde...
متن کاملCompact Semigroups and Pseudospectra
We provide new information concerning the pseudospectra of the complex harmonic oscillator. Our analysis illustrates two different techniques for getting resolvent norm estimates. The first uses the JWKB method and extends for this particular potential some results obtained recently by E.B. Davies. The second relies on the fact that the bounded holomorphic semigroup generated by the complex har...
متن کاملRemarks on Affine Semigroups
A semigroup is a nonvoid Hausdorff space together with a continuous associative multiplication, denoted by juxtaposition. In what follows S will denote one such and it will be assumed that S is compact. I t thus entails no loss of generality to suppose that S is contained in a locally convex linear topological space 9C, but no particular imbedding is assumed. For general notions about semigroup...
متن کاملTHE ANALOGUE OF WEIGHTED GROUP ALGEBRA FOR SEMITOPOLOGICAL SEMIGROUPS
In [1,2,3], A. C. Baker and J.W. Baker studied the subspace Ma(S) of the convolution measure algebra M, (S) of a locally compact semigroup. H. Dzinotyiweyi in [5,7] considers an analogous measure space on a large class of C-distinguished topological semigroups containing all completely regular topological semigroups. In this paper, we extend the definitions to study the weighted semigroup ...
متن کاملIdempotent Measures on Compact Semigroups
Throughout this paper, 5 will be a compact Hausdorff topological semigroup, 5 will denote the convolution semigroup of normalized non-negative regular Borel measures on 5, and H will be the carrier of a measure p in 5. The space of continuous complex valued functions on 5 will be denoted by C(S), while Cr(S) will be the subspace of C(S) of real valued functions. Standard terminology and definit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1969
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1969.100876